martes, 15 de abril de 2025

Un ejercicio sobre masas relativistas

Queremos calcular la velocidad que debería tener un electrón para que su masa relativista sea igual a la masa en reposo de un protón

Sabemos que la relación entre la masa relativista, $m$, de una partícula, con su masa en reposo, $m_0$, y su velocidad, $v$, viene dada por $$m=\dfrac{m_0}{\sqrt{1-(\frac{v}{c})^2}}\quad (1)$$ donde $c$ es la velocidad de la luz en el vacío, $c\approx 2,998 \times 10^8\,\dfrac{\text{m}}{\text{s}}$

La masa en reposo de un electrón es $m_0=9,109 \times 10^{-31}\,\text{kg}$ y la masa en reposo de un protón es $m_0=1,672 \times 10^{-27}\,\text{kg}$

Entonces, según (1), deberá cumplirse que $$1,672 \times 10^{-27}=\dfrac{9,109 \times 10^{-31}}{\sqrt{1-(\frac{v}{2,998 \times 10^8})^2}}$$ por consiguiente, $$\sqrt{1-(\frac{v}{2,998 \times 10^8})^2}=\dfrac{9,109 \times 10^{-31}}{1,672 \times 10^{-27}}$$ luego $$1-\left(\frac{v}{2,998 \times 10^8}\right)^2=\left(\dfrac{9,109 \times 10^{-31}}{1,672 \times 10^{-27}}\right)^2$$ con lo cual, $$\left(\frac{v}{2,998 \times 10^8}\right)^2=1-\left(\dfrac{9,109 \times 10^{-31}}{1,672 \times 10^{-27}}\right)^2$$ y por tanto, $$\frac{v}{2,998 \times 10^8}=\sqrt{1-\left(\dfrac{9,109 \times 10^{-31}}{1,672 \times 10^{-27}}\right)^2}$$ llegando a, $$v=2,998 \times 10^8 \cdot \sqrt{1-\left(\dfrac{9,109 \times 10^{-31}}{1,672 \times 10^{-27}}\right)^2}$$ Teniendo en cuenta que $\left(\dfrac{9,109 \times 10^{-31}}{1,672 \times 10^{-27}}\right)^2 \sim 10^{-7}$ se tiene que $1\gt 1-\left(\dfrac{9,109 \times 10^{-31}}{1,672 \times 10^{-27}}\right)^2$, aunque es prácticamente igual a $1$, y por consiguiente $c\gt v\approx 2,998 \times 10^8 \,\dfrac{\text{m}}{\text{s}}$

$\diamond$

No hay comentarios:

Publicar un comentario